Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest.
نویسندگان
چکیده
Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identified genes that are affected by Kctd15 overexpression. Among the many genes identified, we chose Duf domain containing protein 1 (ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development.
منابع مشابه
Inhibition of neural crest formation by Kctd15 involves regulation of transcription factor AP-2.
The neural crest develops in vertebrate embryos within a discrete domain at the neural plate boundary and eventually gives rise to a migrating population of cells that differentiate into a multitude of derivatives. We have shown that the broad-complex, tramtrack and bric a brac (BTB) domain-containing factor potassium channel tetramerization domain containing 15 (Kctd15) inhibits neural crest f...
متن کاملThe BTB-Containing Protein Kctd15 Is SUMOylated In Vivo
Potassium Channel Tetramerization Domain containing 15 (Kctd15) has a role in regulating the neural crest (NC) domain in the embryo. Kctd15 inhibits NC induction by antagonizing Wnt signaling and by interaction with the transcription factor AP-2α activation domain blocking its activity. Here we demonstrate that Kctd15 is SUMOylated by SUMO1 and SUMO2/3. Kctd15 contains a classical SUMO interact...
متن کاملGeneration and characterization of Kctd15 mutations in zebrafish
Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a a...
متن کاملThe role of Zn2+ in Shal voltage-gated potassium channel formation.
Voltage-gated potassium channels are formed by the tetramerization of their alpha subunits, in a process that is controlled by their conserved N-terminal T1 domains. The crystal structures of Shaker and Shaw T1 domains reveal interesting differences in structures that are contained within a highly conserved BTB/POZ domain fold. The most surprising difference is that the Shaw T1 domain contains ...
متن کاملPentameric assembly of potassium channel tetramerization domain-containing protein 5.
We report the X-ray crystal structure of human potassium channel tetramerization domain-containing protein 5 (KCTD5), the first member of the family to be so characterized. Four findings were unexpected. First, the structure reveals assemblies of five subunits while tetramers were anticipated; pentameric stoichiometry is observed also in solution by scanning transmission electron microscopy mas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 60 4-6 شماره
صفحات -
تاریخ انتشار 2016